Showing posts with label alcohol. Show all posts
Showing posts with label alcohol. Show all posts

Alcohol consumption, gender, and type 2 diabetes: Strange … but true

Let me start this post with a warning about spirits (hard liquor). Taken on an empty stomach, they cause an acute suppression of liver glycogenesis. In other words, your liver becomes acutely insulin resistant for a while. How long? It depends on how much you drink; possibly as long as a few hours. So it is not a very good idea to consume them immediately before eating carbohydrate-rich foods, natural or not, or as part of sweet drinks. You may end up with near diabetic blood sugar levels, even if your liver is insulin sensitive under normal circumstances.

The other day I was thinking about this, and the title of this article caught my attention: Alcohol Consumption and the Risk of Type 2 Diabetes Mellitus. This article is available here in full text. In it, Kao and colleagues show us a very interesting table (Table 4), relating alcohol consumption in men and women with incidence of type 2 diabetes. I charted the data from Model 3 in that table, and here is what I got:


I used the data from Model 3 because it adjusted for a lot of things: age, race, education, family history of diabetes, body mass index, waist/hip ratio, physical activity, total energy intake, smoking history, history of hypertension, fasting serum insulin, and fasting serum glucose. Whoa! As you can see, Model 3 even adjusted for preexisting insulin resistance and impaired glucose metabolism.

So, according to the charts, the more women drink, the lower is the risk of developing type 2 diabetes, even if they drink more than 21 drinks per week. For men, the sweet spot is 7-14 drinks per week; after 21 drinks per week the risk goes up significantly.

A drink is defined as: a 4-ounce glass of wine, a 12-ounce bottle or can of beer, or a 1.5-ounce shot of hard liquor. The amounts of ethanol vary, with more in hard liquor: 4 ounces of wine = 10.8 g of ethanol, 12 ounces of beer = 13.2 g of ethanol, and 1.5 ounces of spirits = 15.1 g of ethanol.

Initially I thought that these results were due to measurement error, particularly because the study relies on questionnaires. But I did some digging and checking, and now think they are not. In fact, there are plausible explanations for them. Here is what I think, and it has to do with a fundamental difference between men and women – sex hormones.

In men, alcohol consumption, particularly in large quantities, suppresses testosterone production. And testosterone levels are inversely associated with diabetes in men. Heavy alcohol consumption also increases estrogen production in men, which is not good news either.

In women, alcohol consumption, particularly in large quantities, increases estrogen production. And estrogen levels are (you guessed it) inversely associated with diabetes in women. Unnatural suppression of testosterone levels in women is not good either, as this hormone also plays important roles in women; e.g., it influences mood and bone density.

What if we were to disregard the possible negative health effects of suppressing testosterone production in women; should women start downing 21 drinks or more per week? The answer is “no”, because alcohol consumption, particularly in large quantities, increases the risk of breast cancer in women. So, for women, alcohol consumption in moderation may also provide overall health benefits, as it does for men; but for different reasons.

How much dietary protein can you store in muscle? About 15 g/d if you are a gifted bodybuilder

Let us say you are one of the gifted few who are able to put on 1 lb of pure muscle per month, or 12 lbs per year, by combining strength training with a reasonable protein intake. Let us go even further and assume that the 1 lb of muscle that we are talking about is due to muscle protein gain, not glycogen or water. This is very uncommon; one has to really be genetically gifted to achieve that.

And you do that by eating a measly 80 g of protein per day. That is little more than 0.5 g of protein per lb of body weight if you weigh 155 lbs; or 0.4 per lb if you weigh 200 lbs. At the end of the year you are much more muscular. People even think that you’ve been taking steroids; but that just came naturally. The figure below shows what happened with the 80 g of protein you consumed every day. About 15 g became muscle (that is 1 lb divided by 30) … and 65 g “disappeared”!


Is that an amazing feat? Yes, it is an amazing feat of waste, if you think that the primary role of protein is to build muscle. More than 80 percent of the protein consumed was used for something else, notably to keep your metabolic engine running.

A significant proportion of dietary protein also goes into the synthesis of albumin, to which free fatty acids bind in the blood. (Albumin is necessary for the proper use of fat as fuel.) Dietary protein is also used in the synthesis of various body tissues and hormones.

Dietary protein does not normally become body fat, but can be used in place of fat as fuel and thus allow more dietary fat to be stored. It leads to an insulin response, which causes less body fat to be released. In this sense, dietary protein has a fat-sparing effect, preventing it from being used to supply the energy needs of the body.

Nevertheless, the fat-sparing effect of protein is lower than that of another "macronutrient" – alcohol. That is, alcohol takes precedence over carbohydrates for use as fuel. However, protein takes precedence over carbohydrates. Neither alcohol nor protein typically becomes body fat. Carbohydrates can become body fat, but only when glycogen stores are full.

What does this mean?

As it turns out, a reasonably high protein intake seems to be quite healthy, and there is nothing wrong with the body using protein to feed its metabolism.

Having said that, one does not need enormous amounts of protein to keep or even build muscle if one is getting enough calories from other sources.

In my next post I’ll talk a little bit more about that.