Showing posts with label fat loss. Show all posts
Showing posts with label fat loss. Show all posts

How lean should one be?

Loss of muscle mass is associated with aging. It is also associated with the metabolic syndrome, together with excessive body fat gain. It is safe to assume that having low muscle and high fat mass, at the same time, is undesirable.

The extreme opposite of that, achievable though natural means, would be to have as much muscle as possible and as low body fat as possible. People who achieve that extreme often look a bit like “buff skeletons”.

This post assumes that increasing muscle mass through strength training and proper nutrition is healthy. It looks into body fat levels, specifically how low body fat would have to be for health to be maximized.

I am happy to acknowledge that quite often I am working on other things and then become interested in a topic that is brought up by Richard Nikoley, and discussed by his readers (I am one of them). This post is a good example of that.

Obesity and the diseases of civilization

Obesity is strongly associated with the diseases of civilization, of which the prototypical example is perhaps type 2 diabetes. So much so that sometimes the impression one gets is that without first becoming obese, one cannot develop any of the diseases of civilization.

But this is not really true. For example, diabetes type 1 is also one of the diseases of civilization, and it often strikes thin people. Diabetes type 1 results from the destruction of the beta cells in the pancreas by a person’s own immune system. The beta cells in the pancreas produce insulin, which regulates blood glucose levels.

Still, obesity is undeniably a major risk factor for the diseases of civilization. It seems reasonable to want to move away from it. But how much? How lean should one be to be as healthy as possible? Given the ubiquity of U-curve relationships among health variables, there should be a limit below which health starts deteriorating.

Is the level of body fat of the gentleman on the photo below (from: ufcbettingtoday.com) low enough? His name is Fedor; more on him below. I tend to admire people who excel in narrow fields, be they intellectual or sport-related, even if I do not do anything remotely similar in my spare time. I admire Fedor.


Let us look at some research and anecdotal evidence to see if we can answer the question above.

The buff skeleton look is often perceived as somewhat unattractive

Being in the minority is not being wrong, but should make one think. Like Richard Nikoley’s, my own perception of the physique of men and women is that, the leaner they are, the better; as long as they also have a reasonable amount of muscle. That is, in my mind, the look of a stage-ready competitive natural bodybuilder is close to the healthiest look possible.

The majority’s opinion, however, seems different, at least anecdotally. The majority of women that I hear or read voicing their opinions on this matter seem to find the “buff skeleton” look somewhat unattractive, compared with a more average fit or athletic look. The same seems to be true for perceptions of males about females.

A little side note. From an evolutionary perspective, perceptions of ancestral women about men must have been much more important than perceptions of ancestral men about women. The reason is that the ancestral women were the ones applying sexual selection pressures in our ancestral past.

For the sake of discussion, let us define the buff skeleton look as one of a reasonably muscular person with a very low body fat percentage; pretty much only essential fat. That would be 10-13 percent for women, and 5-8 percent for men.

The average fit look would be 21-24 percent for women, and 14-17 percent for men. Somewhere in between, would be what we could call the athletic look, namely 14-20 percent for women, and 6-13 percent for men. These levels are exactly the ones posted on this Wikipedia article on body fat percentages, at the time of writing.

From an evolutionary perspective, attractiveness to members of the opposite sex should be correlated with health. Unless we are talking about a costly trait used in sexual selection by our ancestors; something analogous to the male peacock’s train.

But costly traits are usually ornamental, and are often perceived as attractive even in exaggerated forms. What prevents male peacock trains from becoming the size of a mountain is that they also impair survival. Otherwise they would keep growing. The peahens find them sexy.

Being ripped is not always associated with better athletic performance

Then there is the argument that if you carried some extra fat around the waist, then you would not be able to fight, hunt etc. as effectively as you could if you were living 500,000 years ago. Evolution does not “like” that, so it is an unnatural and maladaptive state achieved by modern humans.

Well, certainly the sport of mixed martial arts (MMA) is not the best point of comparison for Paleolithic life, but it is not such a bad model either. Look at this photo of Fedor Emelianenko (on the left, clearly not so lean) next to Andrei Arlovski (fairly lean). Fedor is also the one on the photo at the beginning of this post.

Fedor weighed about 220 lbs at 6’; Arlovski 250 lbs at 6’4’’. In fact, Arlovski is one of the leanest and most muscular MMA heavyweights, and also one of the most highly ranked. Now look at Fedor in action (see this YouTube video), including what happened when Fedor fought Arlovski, at around the 4:28 mark. Fedor won by knockout.

Both Fedor and Arlovski are heavyweights; which means that they do not have to “make weight”. That is, they do not have to lose weight to abide by the regulations of their weight category. Since both are professional MMA fighters, among the very best in the world, the weight at which they compete is generally the weight that is associated with their best performance.

Fedor was practically unbeaten until recently, even though he faced a very high level of competition. Before Fedor there was another professional fighter that many thought was from Russia, and who ruled the MMA heavyweight scene for a while. His name is Igor Vovchanchyn, and he is from the Ukraine. At 5’8’’ and 230 lbs in his prime, he was a bit chubby. This YouTube video shows him in action; and it is brutal.

A BMI of about 25 seems to be the healthiest for long-term survival

Then we have this post by Stargazey, a blogger who likes science. Toward the end the post she discusses a study suggesting that a body mass index (BMI) of about 25 seems to be the healthiest for long-term survival. That BMI is between normal weight and overweight. The study suggests that both being underweight or obese is unhealthy, in terms of long-term survival.

The BMI is calculated as an individual’s body weight divided by the square of the individual’s height. A limitation of its use here is that the BMI is a more reliable proxy for body fat percentage for women than for men, and can be particularly misleading when applied to muscular men.

The traditional Okinawans are not super lean

The traditional Okinawans (here is a good YouTube video) are the longest living people in the world. Yet, they are not super lean, not even close. They are not obese either. The traditional Okinawans are those who kept to their traditional diet and lifestyle, which seems to be less and less common these days.

There are better videos on the web that could be used to illustrate this point. Some even showing shirtless traditional karate instructors and students from Okinawa, which I had seen before but could not find again. Nearly all of those karate instructors and students were a bit chubby, but not obese. By the way, karate was invented in Okinawa.

The fact that the traditional Okinawans are not ripped does not mean that the level of fat that is healthy for them is also healthy for someone with a different genetic makeup. It is important to remember that the traditional Okinawans share a common ancestry.

What does this all mean?

Some speculation below, but before that let me tell this: as counterintuitive as it may sound, excessive abdominal fat may be associated with higher insulin sensitivity in some cases. This post discusses a study in which the members of a treatment group were more insulin sensitive than the members of a control group, even though the former were much fatter; particularly in terms of abdominal fat.

It is possible that the buff skeleton look is often perceived as somewhat unattractive because of cultural reasons, and that it is associated with the healthiest state for humans. However, it seems a bit unlikely that this applies as a general rule to everybody.

Another possibility, which appears to be more reasonable, is that the buff skeleton look is healthy for some, and not for others. After all, body fat percentage, like fat distribution, seems to be strongly influenced by our genes. We can adapt in ways that go against genetic pressures, but that may be costly in some cases.

There is a great deal of genetic variation in the human species, and much of it may be due to relatively recent evolutionary pressures.

Life is not that simple!

References

Buss, D.M. (1995). The evolution of desire: Strategies of human mating. New York, NY: Basic Books.

Cartwright, J. (2000). Evolution and human behavior: Darwinian perspectives on human nature. Cambridge, MA: The MIT Press.

Miller, G.F. (2000). The mating mind: How sexual choice shaped the evolution of human nature. New York, NY: Doubleday.

Zahavi, A. & Zahavi, A. (1997). The Handicap Principle: A missing piece of Darwin’s puzzle. Oxford, England: Oxford University Press.

How to lose fat and gain muscle at the same time? Strength training plus a mild caloric deficit

Ballor et al. (1996) conducted a classic and interesting study on body composition changes induced by aerobic and strength training. This study gets cited a lot, but apparently for the wrong reasons. One of these reasons can be gleaned from this sentence in the abstract:

    “During the exercise training period, the aerobic training group … had a significant … reduction in body weight … as compared with the [strength] training group ...

That is, one of the key conclusions of this study was that aerobic training was more effective than strength training as far as weight loss is concerned. (The authors refer to the strength training group as the “weight training group”.)

Prior to starting the exercise programs, the 18 participants had lost a significant amount of weight through dieting, for a period of 11 weeks. The authors do not provide details on the diet, other than that it was based on “healthy” food choices. What this means exactly I am not sure, but my guess is that it was probably not particularly high or low in carbs/fat, included a reasonable amount of protein, and led to a caloric deficit.

The participants were older adults (mean age of 61; range, 56 to 70), who were also obese (mean body fat of 45 percent), but otherwise healthy. They managed to lose an average of 9 kg (about 20 lbs) during that 11-week period.

Following the weight loss period, the participants were randomly assigned to either a 12-week aerobic training (four men, five women) or weight training (four men, five women) exercise program. They exercised 3 days per week. These were whole-body workouts, with emphasis on compound (i.e., multiple-muscle) exercises. The figure below shows what actually happened with the participants.


As you can see, the strength training group (WT) gained about 1.5 kg of lean mass, lost 1.2 kg of fat, and thus gained some weight. The aerobic training group (AT) lost about 0.6 kg of lean mass and 1.8 kg of fat, and thus lost some weight.

Which group fared better? In terms of body composition changes, clearly the strength training group fared better. But my guess is that the participants in the strength training group did not like seeing their weight going up after losing a significant amount of weight through dieting. (An analysis of the possible psychological effects of this would be interesting; a discussion for another blog post.)

The changes in the aerobic training group were predictable, and were the result of compensatory adaptation. Their bodies changed to become better adapted to aerobic exercise, for which a lot of lean mass is a burden, as is a lot of fat mass.

So, essentially the participants in the strength training group lost fat and gained muscle at the same time. The authors say that the participants generally stuck with their weight-loss diet during the 12-week exercise period, but not a very strict away. It is reasonable to conclude that this induced a mild caloric deficit in the participants.

Exercise probably induced hunger, and possibly a caloric surplus on exercise days. If that happened, the caloric deficit must have occurred on non-exercise days. Without some caloric deficit there would not have been fat loss, as extra calories are stored as fat.

There are many self-help books and programs online whose main claim is to have a “revolutionary” prescription for concurrent fat loss and muscle gain – the “holy grail” of body composition change.

Well, it may be as simple as combining strength training with a mild caloric deficit, in the context of a nutritious diet focused on unprocessed foods.

Reference:

Ballor, D.L., Harvey-Berino, J.R., Ades, P.A., Cryan, J., & Calles-Escandon, J. (1996). Contrasting effects of resistance and aerobic training on body composition and metabolism after diet-induced weight loss. Metabolism, 45(2), 179-183.