Showing posts with label bone density. Show all posts
Showing posts with label bone density. Show all posts

Low bone mineral content in older Eskimos: Meat-eating or shrinking?

Mazess & Mather (1974) is probably the most widely cited article summarizing evidence that bone mineral content in older North Alaskan Eskimos was lower (10 to 15 percent) than that of United States whites. Their finding has been widely attributed to the diet of the Eskimos, which is very high in animal protein. Here is what they say:

“The sample consisted of 217 children, 89 adults, and 107 elderly (over 50 years). Eskimo children had a lower bone mineral content than United States whites by 5 to 10% but this was consistent with their smaller body and bone size. Young Eskimo adults (20 to 39 years) of both sexes were similar to whites, but after age 40 the Eskimos of both sexes had a deficit of from 10 to 15% relative to white standards.”

Note that their findings refer strictly to Eskimos older than 40, not Eskimo children or even young adults. If a diet very high in animal protein were to cause significant bone loss, one would expect that diet to cause significant bone loss in children and young adults as well. Not only in those older than 40.

So what may be the actual reason behind this reduced bone mineral content in older Eskimos?

Let me make a small digression here. If you want to meet quite a few anthropologists who are conducting, or have conducted, field research with isolated or semi-isolated hunter-gatherers, you should consider attending the annual Human Behavior and Evolution Society (HBES) conference. I have attended this conference in the past, several times, as a presenter. That gave me the opportunity to listen to some very interesting presentations and poster sessions, and talk with many anthropologists.

Often anthropologists will tell you that, as hunter-gatherers age, they sort of “shrink”. They lose lean body mass, frequently to the point of becoming quite frail in as early as their 60s and 70s. They tend to gain body fat, but not to the point of becoming obese, with that fat replacing lean body mass yet not forming major visceral deposits. Degenerative diseases are not a big problem when you “shrink” in this way; bigger problems are  accidents (e.g., falls) and opportunistic infections. Often older hunter-gatherers have low blood pressure, no sign of diabetes or cancer, and no heart disease. Still, they frequently die younger than one would expect in the absence of degenerative diseases.

A problem normally faced by older hunter-gatherers is poor nutrition, which is both partially caused and compounded by lack of exercise. Hunter-gatherers usually perceive the Western idea of exercise as plain stupidity. If older hunter-gatherers can get youngsters in their prime to do physically demanding work for them, they typically will not do it themselves. Appetite seems to be negatively affected, leading to poor nutrition; dehydration often is a problem as well.

Now, we know from this post that animal protein consumption does not lead to bone loss. In fact, it seems to increase bone mineral content. But there is something that decreases bone mineral content, as well as muscle mass, like nothing else – lack of physical activity. And there is something that increases bone mineral content, as well as muscle mass, in a significant way – vigorous weight-bearing exercise.

Take a look at the figure below, which I already discussed on a previous post. It shows a clear pattern of benign ventricular hypertrophy in Eskimos aged 30-39. That goes down dramatically after age 40. Remember what Mazess & Mather (1974) said in their article: “… after age 40 the Eskimos of both sexes had a deficit of from 10 to 15% relative to white standards”.


Benign ventricular hypertrophy is also known as athlete's heart, because it is common among athletes, and caused by vigorous physical activity. A prevalence of ventricular hypertrophy at a relatively young age, and declining with age, would suggest benign hypertrophy. The opposite would suggest pathological hypertrophy, which is normally induced by obesity and chronic hypertension.

So there you have it. The reason older Eskimos were found to have lower bone mineral content after 40 is likely not due to their diet.  It is likely due to the same reasons why they "shrink", and also in part because they "shrink". Not only does physical activity decrease dramatically as Eskimos age, but so does lean body mass.

Obese Westerners tend to have higher bone density on average, because they frequently have to carry their own excess body weight around, which can be seen as a form of weight-bearing exercise. They pay the price by having a higher incidence of degenerative diseases, which probably end up killing them earlier, on average, than osteoporosis complications.

Reference

Mazess R.B., & Mather, W.W. (1974). Bone mineral content of North Alaskan Eskimos. American Journal of Clinical Nutrition, 27(9), 916-925.

Does protein leach calcium from the bones? Yes, but only if it is plant protein

The idea that protein leaches calcium from the bones has been around for a while. It is related to the notion that protein, especially from animal foods, increases blood acidity. The body then uses its main reservoir of calcium, the bones, to reduce blood acidity. Chris Masterjohn does not agree with this idea. This post generally supports Chris’s view, and adds a twist to it, related to plant protein consumption.

The “eat-meat-lose-bone” idea has apparently become popular due to the position taken by Loren Cordain on the topic. Dr. Cordain has also made several important and invaluable contributions to our understanding of the diets of our Paleolithic ancestors. He has argued in his book, The Paleo Diet, and elsewhere (see, e.g., here) that to counter the acid load of protein one should eat fruits and vegetables. The latter are believed to have an alkaline load.

If the idea that protein leaches calcium from the bones is correct, one would expect to see a negative association between protein consumption and bone mineral density (BMD). This negative association should be particularly strong in people aged 50 and older, who are more vulnerable to BMD losses.

As it turns out, this idea appears to be correct only for plant protein. Animal protein seems to be associated with an increase in BMD, at least according to a study by Promislow et al. (2002). The study shows that there is a positive multivariate association between animal protein consumption and BMD; an association that becomes negative when plant protein consumption is considered.

The study focused on 572 women and 388 men aged 55–92 years living in Rancho Bernardo, California. Food frequency questionnaires were administered in the 1988–1992 period, and BMD was measured 4 years later. The bar chart below shows the approximate increases in BMD (in g/cm^2) for each 15 g/d increment in protein intake.


The authors reported increments in BMD for different increments of protein (15 and 5 g/d), so the results above are adjusted somewhat from the original values reported in the article. Keeping that in mind, the increment in BMD for men due to animal protein was not statistically significant (P=0.20). That is the smallest bar on the left.

Does protein leach calcium from the bones? Based on this study, the reasonable answers to this question are yes for plant protein, and no for animal protein. For animal protein, it seems to be quite the opposite.

Even more interesting, calcium intake did not seem to be much of a factor. BMD gains due to animal protein seemed to converge to similar values whether calcium intake was high, medium or low. The convergence occurred as animal protein intake increased, and the point of convergence was between 85-90 g/d of animal protein intake.

And high calcium intakes did not seem to protect those whose plant protein consumption was high.

The authors do not discuss specific foods, but one can guess the main plant protein that those folks likely consumed. It was likely gluten from wheat products.

Are the associations above due to: (a) the folks eating animal protein consuming more fruits and vegetables than the folks eating plant protein; or (b) something inherent to animal foods that stimulates an increase in the absorption of dietary calcium, even in small amounts?

This question cannot be answered based on this study; it should have controlled for fruit and vegetable consumption for that.

But if I were to bet, I would bet on (b).

Reference

Promislow, J.H.E., Goodman-Gruen, D., Slymen, D.J., & Barrett-Connor, E. (2002). Protein consumption and bone mineral density in the elderly. American Journal of Epidemiology, 155(7), 636–644.