Showing posts with label genes. Show all posts
Showing posts with label genes. Show all posts

How come evolution hasn’t made us immortal? Death, like sex, helps animal populations avoid extinction

Genes do not evolve, nor do traits that are coded for our genes. We say that they evolve to facilitate discourse, which is alright. Populations evolve. A new genotype appears in a population and then either spreads or disappears. If it spreads, then the population is said to be evolving with respect to that genotype. A genotype may spread to an entire population; in population genetics, this is called “fixation”.

(Human chromosomes capped by telomeres, the white areas at the ends. Telomere shortening is caused by oxidative stress, and seems to be associated with death of cells and organisms. Source: Wikipedia.)

Asexual reproduction is very uncommon among animals. The most accepted theory to explain this is that animal populations live in environments that change very quickly, and thus need a great deal of genetic diversity within them to cope with the change. Otherwise they disappear, and so do their genes. Asexual reproduction leads to dramatically less genetic diversity in populations than sexual reproduction.

Asexual reproduction is similar to cloning. Each new individual looks a lot like its single parent. This does not work well in populations where individuals live relatively long lives. And even 1 year may be too long in this respect. It is just too much time to wait for a possible new mutation that will bring in some genetic diversity. To complicate matters, genetic mutation does not occur very often, and most genetic mutations are neutral with respect to the phenotype (i.e., they don’t code for any trait).

This is not so much of a problem for species whose members reproduce extremely fast; e.g., produce a new generation in less than 1 hour. A fast-reproducing species usually has a short lifespan as well. Accordingly, asexual reproduction is common among short-lived and fast-reproducing unicellular organisms and pathogens that have no cell structure like viruses.

Bacteria and viruses, in particular, form a part of the environment in which animals live that require animal populations to have a large amount of genetic diversity. Animal populations with low genetic diversity are unlikely to be able to cope with the barrage of diseases caused by these fast-mutating parasites.

We make sex chiefly because of the parasites.

And what about death? What does it bring to the table for a population?

Let us look at the other extreme – immortality. Immortality is very problematic in evolutionary terms because a population of immortal individuals would quickly outgrow its resources. That would happen too fast for the population to evolve enough intelligence to be able to use resources beyond those that were locally available.

In this post I assume that immortality is not the same as indestructibility. Here immortality is equated to the absence of aging as we know it. In this sense, immortals can still die by accident or due to disease. They simply do not age. For immortals, susceptibility to disease does not go up with age.

One could argue that a population of immortal individuals who did not reproduce would have done just fine. But that is not correct, because in this case immortality would be akin to cloning, but worse. Genetic diversity would not grow, as no mutations would occur. The fixed population of immortals would be unable to cope with fast-mutating parasites.

There is so much selection pressure against immortality in nature that it is no surprise that animals of very few species live more than 60 years on average. Humans are at the high end of the longevity scale. They are there for a few reasons. One is that our ancestors had offspring that required extra care, which led to an increase in the parents’ longevity. The offspring required extra care chiefly because of their large brains.

That increase in longevity was likely due to genetic mutations that helped our ancestors extend a lifespan that was programmed to be relatively short. Immortality is not a sound strategy for population survival, and thus there are probably many mechanisms through which it is prevented.

Death is evolution’s main ally. Sex is a very good helper. Both increase genetic diversity in populations.

We can use our knowledge of evolution to live better today. The aging clock can be slowed significantly via evolutionarily sound diet and lifestyle changes, essentially because some of our modern diet and lifestyle choices accelerate aging a lot. But diet and lifestyle changes probably will not make people live to 150.

If we want to become immortal, as we understand it in our current human form, ultimately we may want to beat evolution. In this sense, only very intelligent beings can become immortal.

Maybe we can achieve that by changing our genes, or by learning how to transfer our consciousness “software” into robots. In doing so, however, we may become something different; something that is not human and thus doesn’t see things in the same way as a human does. A conscious robot, without the hormones that so heavily influence human behavior, may find that being alive is pointless.

There is another problem. What if the only natural way to achieve some form of immortality is through organic death, but in a way that we don’t understand? This is not a matter of faith or religion. There are many things that we don’t know for sure. This is probably the biggest mystery of all; one that we cannot unravel in our current human state.

Human traits are distributed along bell curves: You need to know yourself, and HCE can help

Most human traits (e.g., body fat percentage, blood pressure, propensity toward depression) are influenced by our genes; some more than others. The vast majority of traits are also influenced by environmental factors, the “nurture” part of the “nature-nurture” equation. Very few traits are “innate”, such as blood type.

This means that manipulating environmental factors, such as diet and lifestyle, can strongly influence how the traits are finally expressed in humans. But each individual tends to respond differently to diet and lifestyle changes, because each individual is unique in terms of his or her combination of “nature” and “nurture”. Even identical twins are different in that respect.

When plotted, traits that are influenced by our genes are distributed along a bell-shaped curve. For example, a trait like body fat percentage, when measured in a population of 1000 individuals, will yield a distribution of values that will look like a bell-shaped distribution. This type of distribution is also known in statistics as a “normal” distribution.

Why is that?

The additive effect of genes and the bell curve

The reason is purely mathematical. A measurable trait, like body fat percentage, is usually influenced by several genes. (Sometimes individual genes have a very marked effect, as in genes that “switch on or off” other genes.) Those genes appear at random in a population, and their various combinations spread in response to selection pressures. Selection pressures usually cause a narrowing of the bell-shaped curve distributions of traits in populations.

The genes interact with environmental influences, which also have a certain degree of randomness. The result is a massive combined randomness. It is this massive randomness that leads to the bell-curve distribution. The bell curve itself is not random at all, which is a fascinating aspect of this phenomenon. From “chaos” comes “order”. A bell curve is a well-defined curve that is associated with a function, the probability density function.

The underlying mathematical reason for the bell shape is the central limit theorem. The genes are combined in different individuals as combinations of alleles, where each allele is a variation (or mutation) of a gene. An allele set, for genes in different locations of the human DNA, forms a particular allele combination, called a genotype. The alleles combine their effects, usually in an additive fashion, to influence a trait.

Here is a simple illustration. Let us say one generates 1000 random variables, each storing 10 random values going from 0 to 1. Then the values stored in each of the 1000 random variables are added. This mimics the additive effect of 10 genes with random allele combinations. The result are numbers ranging from 1 to 10, in a population of 1000 individuals; each number is analogous to an allele combination. The resulting histogram, which plots the frequency of each allele combination (or genotype) in the population, is shown on the figure bellow. Each allele configuration will “push for” a particular trait range, making the trait distribution also have the same bell-shaped form.


The bell curve, research studies, and what they mean for you

Studies of the effects of diet and exercise on health variables usually report their results in terms of average responses in a group of participants. Frequently two groups are used, one control and one treatment. For example, in a diet-related study the control group may follow the Standard American Diet, and the treatment group may follow a low carbohydrate diet.

However, you are not the average person; the average person is an abstraction. Research on bell curve distributions tells us that there is about a 68 percentage chance that you will fall within a 1 standard deviation from the average, to the left or the right of the “middle” of the bell curve. Still, even a 0.5 standard deviation above the average is not the average. And, there is approximately a 32 percent chance that you will not be within the larger -1 to 1 standard deviation range. If this is the case, the average results reported may be close to irrelevant for you.

Average results reported in studies are a good starting point for people who are similar to the studies’ participants. But you need to generate your own data, with the goal of “knowing yourself through numbers” by progressively analyzing it. This is akin to building a “numeric diary”. It is not exactly an “N=1” experiment, as some like to say, because you can generate multiple data points (e.g., N=200) on how your body alone responds to diet and lifestyle changes over time.

HealthCorrelator for Excel (HCE)

I think I have finally been able to develop a software tool that can help people do that. I have been using it myself for years, initially as a prototype. You can see the results of my transformation on this post. The challenge for me was to generate a tool that was simple enough to use, and yet powerful enough to give people good insights on what is going on with their body.

The software tool is called HealthCorrelator for Excel (HCE). It runs on Excel, and generates coefficients of association (correlations, which range from -1 to 1) among variables and graphs at the click of a button.

This 5-minute YouTube video shows how the software works in general, and this 10-minute video goes into more detail on how the software can be used to manage a specific health variable. These two videos build on a very small sample dataset, and their focus is on HDL cholesterol management. Nevertheless, the software can be used in the management of just about any health-related variable – e.g., blood glucose, triglycerides, muscle strength, muscle mass, depression episodes etc.

You have to enter data about yourself, and then the software will generate coefficients of association and graphs at the click of a button. As you can see from the videos above, it is very simple. The interpretation of the results is straightforward in most cases, and a bit more complicated in a smaller number of cases. Some results will probably surprise users, and their doctors.

For example, a user who is a patient may be able to show to a doctor that, in the user’s specific case, a diet change influences a particular variable (e.g., triglycerides) much more strongly than a prescription drug or a supplement. More posts will be coming in the future on this blog about these and other related issues.

The evolution of costly traits: Competing for women can be unhealthy for men

There are human traits that evolved in spite of being survival handicaps. These counterintuitive traits are often called costly traits, or Zahavian traits (in animal signaling contexts), in honor of the evolutionary biologist Amotz Zahavi (Zahavi & Zahavi, 1997). I have written a post about this type of traits, and also an academic article (Kock, 2009). The full references and links to these publications are at the end of this post.

The classic example of costly trait is the peacock’s train, which is used by males to signal health to females. (Figure below from: animals.howstuffworks.com.) The male peacock’s train (often incorrectly called “tail”) is a costly trait because it impairs the ability of a male to flee predators. It decreases a male’s survival success, even though it has a positive net effect on the male’s reproductive success (i.e., the number of offspring it generates). It is used in sexual selection; the females find big and brightly colored trains with many eye spots "sexy".


So costly traits exist in many species, including the human species, but we have not identified them all yet. The implication for human diet and lifestyle choices is that our ancestors might have evolved some habits that are bad for human survival, and moved away from others that are good for survival. And I am not only talking about survival among modern humans; I am talking about survival among our human ancestors too.

The simple reason for the existence of costly traits in humans is that evolution tends to maximize reproductive success, not survival, and that applies to all species. (Inclusive fitness theory goes a step further, placing the gene at the center of the selection process, but this is a topic for another post.) If that were not the case, rodent species, as well as other species that specialize in fast reproduction within relatively short life spans, would never have evolved.

Here is an interesting piece of news about research done at the University of Michigan. (I have met the lead researcher, Dan Kruger, a couple of times at HBES conferences. My impression is that his research is solid.) The research illustrates the evolution of costly traits, from a different angle. The researchers argue, based on the results of their investigation, that competing for a woman’s attention is generally bad for a man’s health!

Very romantic ...

References:

Kock, N. (2009). The evolution of costly traits through selection and the importance of oral speech in e-collaboration. Electronic Markets, 19(4), 221-232.

Zahavi, A. & Zahavi, A. (1997). The Handicap Principle: A missing piece of Darwin’s puzzle. Oxford, England: Oxford University Press.