Nuts by numbers: Should you eat them, and how much?

Nuts are generally seen as good sources of protein and magnesium. The latter plays a number of roles in the human body, and is considered critical for bone health. Nuts are also believed to be good sources of vitamin E. While there is a lot of debate about vitamin E’s role in health, it is considered by many to be a powerful antioxidant. Other than in nuts, vitamin E is not easily found in foods other than seeds and seed oils.

Some of the foods that we call nuts are actually seeds; others are legumes. For simplification, in this post I am calling nuts those foods that are generally protected by shells (some harder than others). This protective layer is what makes most people call them nuts.

Let us see how different nuts stack up against each other in terms of key nutrients. The quantities listed below are per 1 oz (28 g), and are based on data from Nutritiondata.com. All are raw. Roasting tends to reduce the vitamin content of nuts, often by half, and has little effect on the mineral content. Protein and fat content are also reduced, but not as much as the vitamin content.

These two figures show the protein, fat, and carbohydrate content of nuts (on the left); and the omega-6 and omega-3 fat content (on the right).


When we talk about nuts, walnuts are frequently presented in a very positive light. The reason normally given is that walnuts have a high omega-3 content; the plant form of omega-3, alpha-linolenic acid (ALA). That is true. But look at the large amount of omega-6 in walnuts. The difference between the omega-6 and omega-3 content in walnuts is about 8 g! And this is in only 1 oz of walnuts. That is 8 g of possibly pro-inflammatory omega-6 fats to be “neutralized”. It would take many fish oil softgels to achieve that.

Walnuts should be eaten in moderation. Most studies looking at the health effects of nuts, including walnuts, show positive results in short-term interventions. But they usually involve moderate consumption, often of 1 oz per day. Eat several ounces of walnuts every day, and you are entering industrial see oil territory in terms of omega-6 fats consumption. Maybe other nutrients in walnuts have protective effects, but still, this looks like dangerous territory; “diseases of civilization” territory.

A side note. Focusing too much on the omega-6 to omega-3 ratio of individual foods can be quite misleading. The reason is that a food with a very small amount of omega-6 (e.g., 50 mg) but close to zero omega-3 will have a very high ratio. (Any number divided by zero yields infinity.) Yet, that food will contribute little omega-6 to a person’s diet. It is the ratio at the end of the day that matters, when all foods that have been eaten are considered.

The figures below show the magnesium content of nuts (on the left); and the vitamin E content (on the right).


Let us say that you are looking for the best combination of protein, magnesium, and vitamin E. And you also want to limit your intake of omega-6 fats, which is a very wise thing to do. Then what is the best choice? It looks like it is almonds. And even they should be eaten in small amounts, as 1 oz has more than 3 g of omega-6 fats.

Macadamia nuts don’t have much omega-6; their fats are mostly monounsaturated, which are very good. Their protein to fat ratio is very low, and they don’t have much magnesium or vitamin E. Coconuts (i.e., their meat) have mostly medium-chain saturated fats, which are also very good. Coconuts have little protein, magnesium, and vitamin E. If you want to increase your intake of healthy fats, both macadamia nuts and coconuts are good choices, with macadamia nuts providing about 3 times more fat.

There are many other dietary sources of magnesium around. In fact, magnesium is found in many foods. Examples are, in approximate descending order of content: salmon, spinach, sardine, cod, halibut, banana, white potato, sweet potato, beef, chicken, pork, liver, and cabbage. This is by no means a comprehensive list.

As for vitamin E, it likes to hide in seeds. While it may be a powerful antioxidant, I wonder whether Mother Nature really had it “in mind” as she tinkered with our DNA for the last few million years.

Maknig to mayn tipos? Myabe ur teh boz

Undoubtedly one of the big differences between life today and in our Paleolithic past is the level of stress that modern humans face on a daily basis. Much stress happens at work, which is very different from what our Paleolithic ancestors would call work. Modern office work, in particular, would probably be seen as a form of slavery by our Paleolithic ancestors.

Some recent research suggests that organizational power distance is a big factor in work-related stress. Power distance is essentially the degree to which bosses and subordinates accept wide differences in organizational power between them (Hofstede, 2001).

(Source: talentedapps.wordpress.com)

I have been studying the topic of information overload for a while. It is a fascinating topic. People who experience it have the impression that they have more information to process than they can handle. They also experience significant stress as a result of it, and both the quality of their work and their productivity goes down.

Recently some colleagues and I conducted a study that included employees from companies in New Zealand, Spain, and the USA (Kock, Del Aguila-Obra & Padilla-Meléndez, 2009). These are countries whose organizations typically display significant differences in power distance. We found something unexpected. Information overload was much more strongly associated with power distance than with the actual amount of information employees had to process on a daily basis.

While looking for explanations to this paradoxical finding, I recalled an interview I gave way back in 2001 to the Philadelphia Inquirer, commenting on research by Dr. David A. Owens. His research uncovered an interesting phenomenon. The higher up in the organizational pecking order one was, the less the person was concerned about typos on emails to subordinates.

There is also some cool research by Carlson & Davis (1998) suggesting that bosses tend to pick the communication media that are the most convenient for them, and don’t care much about convenience for the subordinates. One example would be calling a subordinate on the phone to assign a task, and then demanding a detailed follow-up report by email.

As a side note, writing a reasonably sized email takes a lot longer than conveying the same ideas over the phone or face-to-face (Kock, 2005). To be more precise, it takes about 10 times longer when the word count is over 250 and the ideas being conveyed are somewhat complex. For very short messages, a written medium like email is fairly convenient, and the amount of time to convey ideas may be even shorter than by using the phone or doing it face-to-face.

So a picture started to emerge. Bosses choose the communication media that are convenient for them when dealing with subordinates. If the media are written, they don’t care about typos at all. The subordinates use the media that are imposed on them, and if the media are written they certainly don’t want something with typos coming from them to reach their bosses. It would make them look bad.

The final result is this. Subordinates experience significant information overload, particularly in high power distance organizations. They also experience significant stress. Work quality and productivity goes down, and they get even more stressed. They get fat, or sickly thin. Their health deteriorates. Eventually they get fired, which doesn’t help a bit.

What should you do, if you are not the boss? Here are some suggestions:

- Try to tactfully avoid letting communication media being imposed on you all the time by your boss (and others). Explicitly state, in a polite way, the media that would be most convenient for you in various circusmtances, both as a receiver and sender. Generally, media that support oral speech are better for discussing complex ideas. Written media are better for short exchanges. Want an evolutionary reason for that? As you wish: Kock (2004).

- Discuss the ideas in this post with your boss; assuming that the person cares. Perhaps there is something that can be done to reduce power distance, for example. Making the work environment more democratic seems to help in some cases.

- And ... dot’n wrory soo mach aobut tipos ... which could be extrapolated to: don’t sweat the small stuff. Most bosses really care about results, and will gladly take an email with some typos telling them that a new customer signed a contract. They will not be as happy with an email telling them the opposite, no matter how well written it is.

Otherwise, your organizational demise may come sooner than you think.

References

Carlson, P.J., & Davis, G.B. (1998). An investigation of media selection among directors and managers: From "self" to "other" orientation. MIS Quarterly, 22(3), 335-362.

Hofstede, G. (2001). Culture’s consequences: Comparing values, behaviors, institutions, and organizations across nations. Thousand Oaks, CA: Sage.

Kock, N. (2004). The psychobiological model: Towards a new theory of computer-mediated communication based on Darwinian evolution. Organization Science, 15(3), 327-348.

Kock, N. (2005). Business process improvement through e-collaboration: Knowledge sharing through the use of virtual groups. Hershey, PA: Idea Group Publishing.

Kock, N., Del Aguila-Obra, A.R., & Padilla-Meléndez, A. (2009). The information overload paradox: A structural equation modeling analysis of data from New Zealand, Spain and the U.S.A. Journal of Global Information Management, 17(3), 1-17.

What is a reasonable vitamin D level?

The figure and table below are from Vieth (1999); one of the most widely cited articles on vitamin D. The figure shows the gradual increase in blood concentrations of 25-Hydroxyvitamin, or 25(OH)D, following the start of daily vitamin D3 supplementation of 10,000 IU/day. The table shows the average levels for people living and/or working in sun-rich environments; vitamin D3 is produced by the skin based on sun exposure.


25(OH)D is also referred to as calcidiol. It is a pre-hormone that is produced by the liver based on vitamin D3. To convert from nmol/L to ng/mL, divide by 2.496. The figure suggests that levels start to plateau at around 1 month after the beginning of supplementation, reaching a point of saturation after 2-3 months. Without supplementation or sunlight exposure, levels should go down at a comparable rate. The maximum average level shown on the table is 163 nmol/L (65 ng/mL), and refers to a sample of lifeguards.

From the figure we can infer that people on average will plateau at approximately 130 nmol/L, after months of 10,000 IU/d supplementation. That is 52 ng/mL. Assuming a normal distribution with a standard deviation of about 20 percent of the range of average levels, we can expect about 68 percent of those taking that level of supplementation to be in the 42 to 63 ng/mL range.

This might be the range most of us should expect to be in at an intake of 10,000 IU/d. This is the equivalent to the body’s own natural production through sun exposure.

Approximately 32 percent of the population can be expected to be outside this range. A person who is two standard deviations (SDs) above the mean (i.e., average) would be at around 73 ng/mL. Three SDs above the mean would be 83 ng/mL. Two SDs below the mean would be 31 ng/mL.

There are other factors that may affect levels. For example, being overweight tends to reduce them. Excess cortisol production, from stress, may also reduce them.

Supplementing beyond 10,000 IU/d to reach levels much higher than those in the range of 42 to 63 ng/mL may not be optimal. Interestingly, one cannot overdose through sun exposure, and the idea that people do not produce vitamin D3 after 40 years of age is a myth.

One would be taking in about 14,000 IU/d of vitamin D3 by combining sun exposure with a supplemental dose of 4,000 IU/d. Clear signs of toxicity may not occur until one reaches 50,000 IU/d. Still, one may develop other complications, such as kidney stones, at levels significantly above 10,000 IU/d.

See this post by Chris Masterjohn, which makes a different argument, but with somewhat similar conclusions. Chris points out that there is a point of saturation above which the liver is unable to properly hydroxylate vitamin D3 to produce 25(OH)D.

How likely it is that a person will develop complications like kidney stones at levels above 10,000 IU/d, and what the danger threshold level could be, are hard to guess. Kidney stone incidence is a sensitive measure of possible problems; but it is, by itself, an unreliable measure. The reason is that it is caused by factors that are correlated with high levels of vitamin D, where those levels may not be the problem.

There is some evidence that kidney stones are associated with living in sunny regions. This is not, in my view, due to high levels of vitamin D3 production from sunlight. Kidney stones are also associated with chronic dehydration, and populations living in sunny regions may be at a higher than average risk of chronic dehydration. This is particularly true for sunny regions that are also very hot and/or dry.

Reference

Vieth, R. (1999). Vitamin D supplementation, 25-hydroxyvitamin D concentrations, and safety. American Journal of Clinical Nutrition, 69(5), 842-856.